Given a square matrix $A,D\in \Bbb{R}^{n \times n}$
a. $\det(\bigl(\begin{smallmatrix} A & 0 \\ 0 & I \end{smallmatrix} \bigr)\bigr)$ = det(A) (Already done)
b. The determinant of a triangular matrix equals to the product of its diagonal entries. (Already done)
c. Any real square matrix $A$ may be decomposed as $A = QR$ where $Q$ is an orthogonal matrix (its columns are orthogonal unit vectors meaning $Q^TQ = QQ^T = I$) and $R$ is an upper triangular matrix.
If $A$ is invertible, then the factorization is unique. This is called $QR$ decomposition.
Prove that det $(\bigl( \begin{smallmatrix} A & B \\ 0 & D \end{smallmatrix} \bigr)) = \det(A)\cdot \det(D)$
Hint: First prove that $(\bigl( \begin{smallmatrix} A & 0 \\ 0 & D \end{smallmatrix} \bigr)) = \det(A) \cdot \det(D)$ using the fact that $\det(AB) = \det(A)\cdot \det(B)$ (for every two matrices $A$, $B$) and part a and then use the $QR-$decomposition.