Let $F(n)$ be the number of all partitions of $[n]$ with no singleton blocks.
Prove that
$$\lim_{n\to\infty}\frac{F(n)}{B(n)}=0$$
According to this question, we can know $$F(n+1)=\sum_{i=0}^{n-1}(-1)^iB(n-i)$$ Bell numbers have the property $$B(n+1)=\sum_{i=0}^n\begin{pmatrix} n\\i \end{pmatrix}B(i)$$ so $$\begin{aligned} \lim_{n\to\infty}\frac{F(n+1)}{B(n+1)}&=\lim_{n\to\infty}\frac{\sum_{i=0}^{n-1}(-1)^iB(n-i)}{\sum_{i=0}^n\begin{pmatrix} n\\i \end{pmatrix}B(i)}\\ &=\frac{B(n)-B(n-1)\cdots}{B(n)+\begin{pmatrix} n\\n-1 \end{pmatrix}B(n-1)\cdots} \end{aligned} $$ I think $B(n)\gg B(n-1)$ so it is equal to $1$ not $0$.
How to prove it? Thanks!