Evaluate: $$\int x(x^2-16)dx$$
I have noticed that this integral can be solved using two different methods, but I am not sure which one is the correct one.
Way 1: Using $u$-subtitution
Let $u=x^2-16, du = 2xdx$
Then, we have $$\int x(x^2-16)dx$$ $$= \frac{1}{2}\int udu$$ $$= \frac{1}{2}(\frac{1}{2}u^2)+C$$
$$= \frac{1}{4}(x^2-16)^2+C$$
Way 2:
$$\int x(x^2-16)dx$$ $$= \int(x^3-16x)dx$$ $$= \frac{1}{4}x^4-\frac{16}{2}x^2+C$$ $$= \frac{1}{4}x^4-8x^2+C$$