How can I integrate $$\int \dfrac{dx}{(x^2-4x+13)^2}?$$
Here is my attempt:
$$\int \dfrac{dx}{(x^2-4x+13)^2}=\int \dfrac{dx}{((x-2)^2+9)^2}$$
Substitute $x-2=3\tan\theta$, $\ dx=3\sec^2\theta d\theta$
\begin{align*} &=\int \dfrac{3\sec^2\theta d\theta}{(9\tan^2\theta+9)^2}\\ &=\int \dfrac{3\sec^2\theta d\theta}{81\sec^4\theta}\\ &=\dfrac{1}{27}\int \cos^2\theta d\theta\\ &=\dfrac{1}{27}\int \frac{1+\cos2\theta}{2} d\theta\\ &=\dfrac{1}{54}\left(\theta+\frac{\sin2\theta}{2}\right)+C \end{align*}
This is where I got stuck. How can I get the answer in terms of $x$?
Can I solve it by other methods?