Let $n \in \mathbb{N}$. Consider $p \in \mathbb{R}_+^*$ and the norms $|\cdot|_p, |\cdot|_{\infty}:\mathbb{C}^n \longrightarrow \mathbb{R}$ given by, for every $\xi=(\xi_1,\xi_2,\cdots,\xi_n) \in \mathbb{C}^n$,
$$|\xi|_p=(|\xi_1|^p+|\xi_2|^p+\cdots + |\xi_n|^p)^{\frac{1}{p}}$$ and $$ |\xi|_{\infty}=\sup_{j \in \{1,\cdots, n\}}|\xi_j|.$$
I want to prove that $$ \lim_{p \longrightarrow \infty} |\xi|_p = |\xi|_{\infty}.$$
But I have no idea of proceeding, I am not familiar with norms in $\mathbb{C}^n$.