0

The random vector $X$ is normally distributed with $X \sim \mathcal{N}(\mu,\Omega)$. $\mu $ is a column vector with $(\mu_1, \mu_2, \mu_3)$.

$\Omega$ is $3\times 3$ matrix. $A$ is a $3\times 3$ matrix and $B$ is $2\times 3$ matrix.

Find the distribution of a random vector $W$ (2x1 ) where $W$ =

\begin{bmatrix} A\vec X \\ B\vec X \\ \end{bmatrix}

Link to original (simpler) question.

1 Answers1

1

We can write:$$\left[\begin{array}{c} A\vec{X}\\ B\vec{X} \end{array}\right]=\left[\begin{array}{c} A\\ B \end{array}\right]\vec{X}$$ and characteristic for normal distribution is that this is enough to conclude that the vector again has normal distribution.

This with expectation: $$\mathbb{E}\left[\begin{array}{c} A\\ B \end{array}\right]\vec{X}=\left[\begin{array}{c} A\\ B \end{array}\right]\mathbb{E}\vec{X}=\left[\begin{array}{c} A\\ B \end{array}\right]\vec{\mu}=\left[\begin{array}{c} A\vec{\mu}\\ B\vec{\mu} \end{array}\right]$$

Its covariance matrix is:

$$\left[\begin{array}{c} A\\ B \end{array}\right]\Omega\left[\begin{array}{c} A\\ B \end{array}\right]^{T}=\left[\begin{array}{c} A\\ B \end{array}\right]\Omega\left[\begin{array}{cc} A^{T} & B^{T}\end{array}\right]=\left[\begin{array}{cc} A\Omega A^{T} & A\Omega B^{T}\\ B\Omega A^{T} & B\Omega B^{T} \end{array}\right]$$

The normal distribution is completely determined by expectation and covariance.

drhab
  • 153,781