We can write:$$\left[\begin{array}{c}
A\vec{X}\\
B\vec{X}
\end{array}\right]=\left[\begin{array}{c}
A\\
B
\end{array}\right]\vec{X}$$ and characteristic for normal distribution is that this is enough to conclude that the vector again has normal distribution.
This with expectation: $$\mathbb{E}\left[\begin{array}{c}
A\\
B
\end{array}\right]\vec{X}=\left[\begin{array}{c}
A\\
B
\end{array}\right]\mathbb{E}\vec{X}=\left[\begin{array}{c}
A\\
B
\end{array}\right]\vec{\mu}=\left[\begin{array}{c}
A\vec{\mu}\\
B\vec{\mu}
\end{array}\right]$$
Its covariance matrix is:
$$\left[\begin{array}{c}
A\\
B
\end{array}\right]\Omega\left[\begin{array}{c}
A\\
B
\end{array}\right]^{T}=\left[\begin{array}{c}
A\\
B
\end{array}\right]\Omega\left[\begin{array}{cc}
A^{T} & B^{T}\end{array}\right]=\left[\begin{array}{cc}
A\Omega A^{T} & A\Omega B^{T}\\
B\Omega A^{T} & B\Omega B^{T}
\end{array}\right]$$
The normal distribution is completely determined by expectation and covariance.