Let a function be defined $f(x)=sin^4x+cos^4x,$ $x\in R$.
Rewriting this,
$$f(x)=(sin^2x+cos^2x)^2-2sin^2xcos^2x$$$$\implies f(x)=1-\frac{sin^22x}{2}$$$$\implies \frac{1}{2}\leq f(x)\leq1 $$
However,upon differentiating the function,we get$$f'(x)=4sin^3x cosx-4cos^3xsinx$$$$\implies f'(x)=4cosxsinx(sin^2x-cos^2x)$$$$\implies f'(x)=-2sin2xcos2x$$$$\implies f'(x)=-sin4x$$Integrating both sides,$$f(x)=\frac{cos4x}{4}$$which lies between$\frac{-1}{4}$ and $\frac{1}{4}$and is not equal to the original function.Why is the answer different?
