Let me change a bit the symbols and write
$$
\eqalign{
& M_{\,n,\,m} (x,y) = \sum\limits_{k = m}^n {
\left[ \matrix{ n \cr k \cr} \right]x^{\,k} \sum\limits_{j = m}^k {
\left( { - 1} \right)^{\,k + j} \left[ \matrix{ k \cr j \cr} \right]\left( \matrix{ j \cr m \cr} \right)y^{\,j - m} } } = \cr
& = \sum\limits_{\left( {m\, \le } \right)\,k\,\left( { \le \,n} \right)} {
\sum\limits_{\left( {m\, \le } \right)\,j\,\left( { \le \,k} \right)} {
\left( { - 1} \right)^{\,k + j} \left[ \matrix{ n \cr k \cr} \right]\left[ \matrix{ k \cr j \cr} \right]
\left( \matrix{ j \cr m \cr} \right)x^{\,k} y^{\,j - m} } } = \cr
& = \sum\limits_{\left( {m\, \le } \right)\,k\,\left( { \le \,n} \right)} {
\sum\limits_{\left( {m\, \le } \right)\,j\,\left( { \le \,k} \right)} {
\left[ \matrix{ n \cr k \cr} \right]x^{\,k} \left( { - 1} \right)^{\,k} \left[ \matrix{ k \cr j \cr} \right]
\left( { - 1} \right)^{\,j} y^{\,j} \left( \matrix{ j \cr m \cr} \right)y^{\, - m} } } \tag{1} \cr}
$$
where the bounds of the sums are put in brackets to show that they are actually implicit
in the binomial and Stirling 1st kind.
Now we have that
$$
\eqalign{
& x^{\,\overline {\,n\,} } = \sum\limits_{\left( {0\, \le } \right)\,k\,\left( { \le \,n} \right)} {
\left[ \matrix{ n \cr k \cr} \right]x^{\,k} } \quad \Rightarrow \cr & \Rightarrow \quad \left( {x + y} \right)^{\,\overline {\,k\,} }
= \sum\limits_{\left( {0\, \le } \right)\,j\,\left( { \le \,k} \right)} {
\left[ \matrix{ k \cr j \cr} \right]\left( {x + y} \right)^{\,j} } = \cr
& = \sum\limits_{\left( {0\, \le } \right)\,j\,\left( { \le \,k} \right)} {
\sum\limits_{\left( {0\, \le } \right)\,m\,\left( { \le \,j} \right)} {
\left[ \matrix{ k \cr j \cr} \right]\left( \matrix{ j \cr m \cr} \right)x^{\,m} y^{\,j - m} } } \quad \Rightarrow \cr
& \Rightarrow \quad \left( { - x - y} \right)^{\,\overline {\,k\,} }
= \left( { - 1} \right)^{\,k} \left( {x + y} \right)^{\,\underline {\,k\,} } = \cr
& = \sum\limits_{\left( {0\, \le } \right)\,m\,\left( { \le \,k} \right)} {
\left( {\sum\limits_{\left( {m\, \le } \right)\,j\,\left( { \le \,k} \right)} {
\left[ \matrix{ k \cr j \cr} \right]\left( \matrix{ j \cr m \cr} \right)\left( { - 1} \right)^{\,j} x^{\,m} y^{\,j - m} } } \right)}
\quad \Rightarrow \cr
& \Rightarrow \quad \sum\limits_{\left( {m\, \le } \right)\,j\,\left( { \le \,k} \right)} {
\left[ \matrix{ k \cr j \cr} \right]\left( \matrix{ j \cr m \cr} \right)\left( { - 1} \right)^{\,j} y^{\,j - m} }
= \left[ {x^{\,m} } \right]\left( { - x - y} \right)^{\,\overline {\,k\,} } \cr}
$$
Therefore
$$
\eqalign{
& M_{\,n,\,m} (x,y) = \cr
& = \sum\limits_{\left( {m\, \le } \right)\,k\,\left( { \le \,n} \right)} {
\left[ \matrix{ n \cr k \cr} \right]x^{\,k} \left( {\left[ {x^{\,m} } \right]\left( {x + y} \right)^{\,\underline {\,k\,} } } \right)} = \cr
& = {1 \over {m!}}\sum\limits_{\left( {m\, \le } \right)\,k\,\left( { \le \,n} \right)} {
\left[ \matrix{ n \cr k \cr} \right]x^{\,k} {{d^{\,m} } \over {dy^{\,m} }}y^{\,\underline {\,k\,} } } \cr \tag{2}}
$$
where $\left[ {x^{\,m} } \right]$ stands for "the coefficient of $x^m$ (in the following expression)".