Let $A_{(n)}:\mathcal B\rightarrow \mathcal B$ be a linear bounded operators such that for any $f\in \mathcal B$, $A_nf\rightarrow Af$. Show that then for any compact operator $B$
$$\|A_nB-AB\|\rightarrow0$$
Any tips how to show this?
Let $A_{(n)}:\mathcal B\rightarrow \mathcal B$ be a linear bounded operators such that for any $f\in \mathcal B$, $A_nf\rightarrow Af$. Show that then for any compact operator $B$
$$\|A_nB-AB\|\rightarrow0$$
Any tips how to show this?