Let $X_0=1$ and $X_n = 1 + \sum_{i=1}^n Y_i$, $\ n\geqslant 1$ where the $Y_i$ are i.i.d. with $\mathbb P(Y_1=2)=\mathbb P(Y_1=-1)=\frac12$. Define $$H_0 = \inf\{n>0: X_n = 0\}. $$ Let $\varphi(s) = \mathbb E[s^{H_0}]$ be the generating function of $H_0$. Show that $\varphi$ satisfies $$s\varphi^3 - 2\varphi + s=0.\tag1 $$
Using Mathematica I found that the only real root of $(1)$ is $$ \frac{2^{1/3} \left(\sqrt{81 s^6-96 s^3}-9 s^3\right)^{2/3}+4\cdot 3^{1/3} s}{6^{2/3} s (\sqrt{81 s^6-96 s^3}-9 s^3)^{1/3}}, $$ which clearly would be extremely tedious to compute by hand. Any suggestions for how to prove this?