Let $Z \in \mathbb{R}^{m \times n}$ be a tall matrix ($m > n$). Solve the following optimization problem in $Q \in \mathbb{R}^{m \times n}$
$$\begin{array}{ll} \text{maximize} & \mbox{Tr} \left(Q^T Z \right)\\ \text{subject to} & Q^T Q = I_{n \times n}\end{array}$$
I'm thinking about the QR factorization of $Z$: let $QR=Z$, then $Trace(Q^TQR)=Trace(R)$. But this does not achieve the upper bound, since $\langle Q, Z\rangle \leq \|Q\|_F \|Z\|_F=\sqrt{n}\|R\|_F$. Am I missing something obvious here?
Thanks in advance!