Complementing A.Γ.'s answer, and rephrasing a bit:
Given $a_1, a_2, \dots, a_n > 0$, we build the $n \times n$ symmetric Cauchy matrix $\rm C$ whose entries are $$c_{ij} = \frac{1}{a_i + a_j}$$ Show that matrix $\rm C$ is positive semidefinite.
Henceforth, we shall assume that the given positive numbers are distinct, i.e., $$|\{a_1, a_2, \dots, a_n\}| = n$$
Let ${\rm A} := \mbox{diag} (a_1, a_2, \dots, a_n)$. Note that $\mathrm A \succ \mathrm O_n$. Consider the following matrix equation
$${\rm A X + X A} = 1_n 1_n^\top$$
Multiplying both sides by $-1$, we obtain a Lyapunov matrix equation
$${\rm (-A) X + X (-A)} = - 1_n 1_n^\top$$
where matrix $-\rm A$ is stable (or Hurwitz) and the RHS is negative semidefinite. Since the pair $(-\rm A, 1_n)$ is controllable, the Lyapunov equation has the following unique, symmetric, positive definite solution
$$\rm X = \int_0^{\infty} e^{- \tau \mathrm A} 1_n 1_n^\top e^{- \tau \mathrm A} \,{\rm d} \tau = \int_0^{\infty} \begin{bmatrix} e^{- a_1 \tau}\\ e^{- a_2 \tau}\\ \vdots\\ e^{- a_n \tau}\end{bmatrix} \begin{bmatrix} e^{- a_1 \tau}\\ e^{- a_2 \tau}\\ \vdots\\ e^{- a_n \tau} \end{bmatrix}^\top \, {\rm d} \tau = \cdots = \rm C$$
because
$$\displaystyle\int_0^{\infty} e^{-(a_i + a_j) \tau} \,{\rm d} \tau = \frac{1}{a_i + a_j}$$
Therefore, we conclude that $\rm C$ is positive definite.
Alternative solution
Vectorizing both sides of the Lyapunov equation,
$$\left( \mathrm I_n \otimes \mathrm A + \mathrm A \otimes \mathrm I_n \right) \mbox{vec} (\mathrm X) = 1_n \otimes 1_n$$
or,
$$\begin{bmatrix} \mathrm A + a_1 \mathrm I_n & & & \\ & \mathrm A + a_2 \mathrm I_n & & \\ & & \ddots & \\ & & & \mathrm A + a_n \mathrm I_n\end{bmatrix} \begin{bmatrix} \mathrm x_1\\ \mathrm x_2\\ \vdots\\ \mathrm x_n\end{bmatrix} = \begin{bmatrix} 1_n\\ 1_n\\ \vdots\\ 1_n\end{bmatrix}$$
where $\mathrm x_i$ is the $i$-th column of $\rm X$. Solving for $\mathrm x_i$,
$$\mathrm x_i = \begin{bmatrix} \frac{1}{a_1 + a_i}\\ \frac{1}{a_2 + a_i}\\ \vdots\\ \frac{1}{a_n + a_i}\end{bmatrix}$$
which is the $i$-th column of Cauchy matrix $\rm C$. Therefore, the unique, symmetric, positive definite solution of the Lyapunov equation is $\rm C$.
Addendum
The controllability matrix corresponding to the pair $(-\rm A, 1_n)$ is
$$\begin{bmatrix} | & | & & |\\ 1_n & -\mathrm A 1_n & \dots & (-1)^{n-1} \mathrm A^{n-1} 1_n\\ | & | & & |\end{bmatrix}$$
which is a square $n \times n$ Vandermonde matrix whose columns have been multiplied by $\pm 1$, which does not affect its rank. Since we assumed that the given $a_1, a_2, \dots, a_n$ are distinct, the Vandermonde matrix has full rank and, thus, the pair $(-\rm A, 1_n)$ is controllable.