Problem :
Let $M$ be a continuous non negative martingale such that $M_{0}=a>0$ and $\lim _{t \rightarrow \infty} M_{t}=0$ a.s.
- For $y \geq a,$ let $T_{y}=\inf \left\{t \geq 0, M_{t}=y\right\} .$ Prove that $\mathbb{P}\left(T_{y}<\infty\right)=a / y$
- Prove that $\sup _{t \geq 0} M_{t} \sim \frac{a}{U}$ where $U \sim \mathcal{U}([0,1])$
My attempt :
both $T_y \wedge n $ and $0$ are bounded stopping times, according to Doob's optional stopping theorem, we have :
$$\mathbb{E}(M_{T_y \wedge n}) = \mathbb{E}(M_0) = a$$
on the other hand we have :
\begin{align*} \mathbb{E}(M_{T_y \wedge n}) &= \mathbb{E}(M_{T_y \wedge n} | T_y < \infty )P(T_y < \infty) + \mathbb{E}(M_{T_y \wedge n} | T_y = \infty )P(T_y = \infty) \\ & = \mathbb{E}(M_{T_y \wedge n} )P(T_y < \infty) + \mathbb{E}(M_n)P(T_y = \infty) \\ \end{align*}
since $M_{T_y \wedge n} \to M_{T_y}$ in $L^1$ then if $M_n \to 0$ in $L^1$ then question 1. is proven.
but do we have $M_n \to 0$ in $L^1$ ?
I know that a necessary condition to obtain the above is that the martingale is uniformly integrable, but in this problem it doesn't look like it's uniformly integrable.
am I tackling the problem the wrong way ?
and for the first one, knowing that the stopping time is finite then the infinimum remains unchanged
where is my mistake ?
– the_firehawk Dec 28 '19 at 23:34