Q) $\int_2^{\infty}\left( \frac{1}{x\log^2x} \right)^pdx$
$p=1$ is simple by substitution. How can I do this in general? Thanks.
Q) $\int_2^{\infty}\left( \frac{1}{x\log^2x} \right)^pdx$
$p=1$ is simple by substitution. How can I do this in general? Thanks.
Make $x=e^t$ to make $$I_p=\int_2^{\infty}\left( \frac{1}{x\log^2x} \right)^p\,dx=\int_{\log(2)}^{\infty}e^{(1-p) t} t^{-2 p}\,dt$$ and $$\int e^{(1-p) t} t^{-2 p}\,dt=-t^{1-2 p} E_{2 p}((p-1) t)$$ where appears the exponential integral function. Then
$$\color{blue}{I_p=\frac{ E_{2 p}((p-1) \log (2))}{\big[\log(2)\big]^{2p-1}}}$$