Let be $$T= \sum_{n=0}^N \hat{T} (n)e^{inx} $$
a trigonometric polynomial of grade $N$ without negative frequencies.
I wanna show that $$ \partial_x T= -iN(F_N \ast T-T) $$ Where $F_N \ast T$ meas the convolution of the Fejer Kernel and T.
might be easy..but I just can't work out the right conversion for this property..
SO
$ \partial_x T= \sum_{n=0}^N \hat{T} (n) in e^{inx} $
$ =\sum_{n=0}^N ( \frac{1}{2 \pi} \int_{ -\pi}^{\pi} T(y)e^{-iny} dy ) e^{inx} in$
$ =\frac{1}{2 \pi} \int_{ -\pi}^{\pi} T(y) (\sum_{n=0}^N e^{in(x-y)})in $
from there on I get carried away in the wrong direction. is the derivative right?
Also..the Fejer Kernel can be expressed as the mean arithmetic value of the dirichtlet kernel so : $$ F_N= \frac{1}{n+1} \sum_{k=0}^n D_k(x) $$ Where $D_k = \sum_{n= -k}^k e^{inx} $ is the Dirichtlet Kernel
Very thankful for any help !