Check whether $$\sum _{m=1}^{\infty }\sum _{n=1}^{\infty }\frac{1}{\left(m+n\right)^2}$$ converges or NOT?
My Try:- $\sum _{m=1}^{\infty }\lim_{i\to \infty} \sum _{n=1}^{i}\frac{1}{\left(m+n\right)^2}=\lim_{j\to \infty}\sum _{m=1}^{j }\lim_{i\to \infty} \sum _{n=1}^{i}\frac{1}{\left(m+n\right)^2}=\lim_{j\to \infty}(\lim_{i\to \infty} \sum _{n=1}^{i}\frac{1}{\left(1+n\right)^2}+ \lim_{i\to \infty} \sum _{n=1}^{i}\frac{1}{\left(2+n\right)^2}+ \lim_{i\to \infty} \sum _{n=1}^{i}\frac{1}{\left(3+n\right)^2}+...\lim_{i\to \infty} \sum _{n=1}^{i}\frac{1}{\left(j+n\right)^2})\ge \lim_{j\to \infty}(j\lim_{i\to \infty} \sum _{n=1}^{i}\frac{1}{\left(j+n\right)^2})$
How do I complete the conclusion?
