Illustrated by this answer, I came up a simpler construction: begin with 3 numbers $\kappa\leq\lambda\leq\delta$, we can consider two disjoint set $V_1, V_2$, where $|V_1|=|V_2|=\delta+1$, then construct two complete graph on it respectively, i.e. $K_{\delta+1}[V_1]+K_{\delta+1}[V_2]$, which makes minimum degree is $\delta$. Then choose two subsets $X\subset V_1, Y\subset V_2$ where $|X|=\lambda\geq |Y|=\kappa$, and choose a surjection $f:X\to Y$ (those are all arbitary), join all vertices $x\in X$ to $f(x)$, that is add $\kappa$ edges $E'=\{\{x,f(x)\}|x\in X\}$. Now what we need is the graph
$$G=(V_1\sqcup V_2,E), E=E(K_{\delta+1}[V_1])\sqcup E(K_{\delta+1}[V_2])\sqcup E'.$$
It's easy to show that $\kappa(G)=\kappa, \lambda(G)=\lambda, \delta(G)=\delta$: given two vertices $u\in V_1, v\in V_2$ there are at most $\kappa$ internal disjoint $uv$-path and at most $\lambda$ edge disjoint $uv$-path, and there exists a vertex whose degree is $\delta$.
At last, $v(G)=2\delta+2, e(G)=\delta(\delta+1)+\kappa$, it's a better construction than 1.
Let $V_1=\{1,\cdots,\delta+1\}, V_2=\{\delta+2,\cdots,2\delta+2\}, f(i)=\delta+1+\min(i,\kappa) (1\leq i\leq \lambda)$, we can use Mathematica to visualize it:
{\[Kappa], \[Lambda], \[Delta]} = {5, 5, 5};(*Need \[Kappa]<=\[Lambda]<=\[Delta]*)
f[i_] := If[1 <= i <= \[Lambda], Min[\[Delta] + 1 + i, \[Delta] + 1 + \[Kappa]]];
bipolyCoord[n_] := Join[Table[ReIm[-E^(-2 Pi i I/n) - 1.5], {i, n}], Table[ReIm[E^(2 Pi i I/n) + 1.5], {i, n}]];
G = EdgeAdd[GraphDisjointUnion[CompleteGraph[\[Delta] + 1], CompleteGraph[\[Delta] + 1]],
Table[i <-> f[i], {i, \[Lambda]}], VertexCoordinates -> bipolyCoord[\[Delta] + 1], VertexLabels -> Automatic]
{VertexConnectivity, EdgeConnectivity, Min@VertexDegree[#] &}[G] // Through
where I show $V_1,V_2$ on vertices of two regular $(\delta+1)$-polygon.