I have some trouble with proving the formula below;
$$\sum_{k=1}^n \sin\Big(\frac{kr \pi}{n+1}\Big)\sin\Big(\frac{ks \pi}{n+1}\Big) = \frac{n+1}{2}\delta_{rs}$$
by making use of complex analysis for any $r, s=1, 2, 3, \ldots, n$.
To solve this, I wanted to use the Kronecker delta's property, $$\delta_{rs} = \frac{1}{n}\sum_{k=1}^ n{e}^{2\pi i \frac{k}{n} (r-s)}$$
So I changed the first formula using addition formulas for sinusoidal functions, $$\sum_{k=1}^n \frac{1}{2}\left[\cos\Big(\frac{k\pi}{n+1}(r-s)\Big)-\cos\Big(\frac{k\pi}{n+1}(r+s)\Big)\right]$$
I'm stuck in this situation. How can I get started..?