Known eight primitive Heron triangles with integer area, sides, and two medians, see A181928. Let $(a,b,c)$ be half-sides, $s$ is area, and $(m_a,m_b,m_c)$ be medians.
I. General properties
$$s=\sqrt{(a + b + c) (b + c - a) (a + c - b) (a + b - c)}$$ $$m_a=\sqrt{2 (b^2 + c^2) - a^2}$$ $$m_b=\sqrt{2 (c^2 + a^2) - b^2}$$ $$m_c=\sqrt{2 (a^2 + b^2) - c^2}$$
We are looking for integer $(a,b,c)$ such that $s$ and two of the $m_k$ are also integers.
II. Other properties
$$9a^2=2 (m_b^2 + m_c^2) - m_a^2$$ $$9b^2=2 (m_c^2 + m_a^2) - m_b^2$$ $$9c^2=2 (m_a^2 + m_b^2) - m_c^2$$ $$m_a^2 - 3 a^2 = 2 (3 b^2 - m_c^2) = 2 (3 c^2 - m_b^2) = x$$ $$m_b^2 - 3 b^2 = 2 (3 c^2 - m_a^2) = 2 (3 a^2 - m_c^2) = y$$ $$m_c^2 - 3 c^2 = 2 (3 a^2 - m_b^2) = 2 (3 b^2 - m_a^2) = z$$ $$x+y+z=0$$ $$m_a^2 + 3 a^2 = m_b^2 + 3 b^2 = m_c^2 + 3 c^2 = w$$ $$m_a^2 + m_b^2 + m_c^2 = 3 (a^2 + b^2 + c^2)=\frac{3}{2}w$$
where $(x,y,z,w)$ is some integer.
Exact two half-sides is odd and one is even, exact two medians is odd and one is even.
Then integer $w$ is of form $(km \pm 3ln)^2+3(kn \mp lm)^2=(k^2+3l^2)(m^2+3n^2)$, where $(k,l,m,n)$ is any positive integer.
III. Relations
Some relations between known primitives Herons triangles, selected by colors.
Note: By common convention, $p|q$ means "$p$ divides $q$". In the second example below, $97|297$ just means $297=3\times97$ and $(a,b,c) = (626,875, 297)$. For simplicity, the non-integer $m_i$ is denoted as $\sqrt{n_k}$.
- $s=1680$
$a=26, b = 73, c = 51$
$m_a= \sqrt{n_1}, m_b = 35, m_c = \color{red}{97}$
$x = 13156, y = -14762, z = 1606, w = 17212$
- $s=221760$
$a = 626, b = 875, c = \color{red}{97}|291$
$m_a = 1144, m_b = \color{blue}{433}, m_c = \sqrt{n_2}$
$x = 133108, y = -2109386, z = \color{red}{97}|1976278, w = \color{red}{97}|2484364$
- $s = 8168160$
$a = 3673, b = 4368, c = 1241$
$m_a = \sqrt{n_3}, m_b = 3314, m_c = 7975$
$x = -12724706, y = -46255676, z = 58980382, w = 68220868$
- $s = 95726400$
$a = 13816, b = 28779, c = \color{blue}{433}|15155$
$m_a = \color{magenta}{21937}|43874, m_b = \color{red}{97}|3589, m_c = \sqrt{n_4}$
$x = 1352282308, y = -2471811602, z = \color{blue}{433}|1119529294, w = \color{blue}{433}|2497573444$
- $s = 302793120$
$a = 11257, b = 14791, c = 14384$
$m_a = \sqrt{n_5}, m_b = 21177, m_c = 22002$
$x = 344466078, y = -207855714, z = -136610364, w = 1104786372$
- $s = 569336866560$
$a = 1823675, b = \color{magenta}{21937}|1930456, c = 185629$
$m_a = \color{blue}{433}|2048523, m_b = \sqrt{n_6}, m_c = \color{orange}{13\cdot96181}|3751059$
$x = -5780925035346, y = \color{magenta}{21937}|(-8186144209212), z = 13967069244558, w = \color{magenta}{21937}|14173817998404$
- $s = 8548588738240320$
$a = \color{orange}{13\cdot96181}|46263061, b = 2442655864, c = 2396426547$
$m_a = \sqrt{n_7}, m_b = \color{magenta}{21937}|2350198558, m_c =\color{#0a0}{661\cdot107581}|2488886435$
$x = \color{orange}{13\cdot96181}|23410294646947500526, y = -12376269747775480124, z = -11034024899172020402, w = \color{orange}{13\cdot96181}|23423136271826038852$
- $s = 17293367819066194215360$
$a = 31982445133, b = 356388643246, c = \color{#0a0}{661\cdot107581}|336426334971$
$m_a = \color{orange}{13\cdot96181}|692364218455, m_b = 318430912888, m_c = \sqrt{n_8}$
$x = 476299580606746896423958, y = -279640348821488939749004, z = \color{#0a0}{661\cdot107581}|(-196659231785257956674954), w = \color{#0a0}{661\cdot107581}|482436841386859028750092$
IV. Question
Is it possible to use these relations to search other Heron triangles with two integer medians?