So, the EL equations are definitely going to look different for these two scenarios, and as your professor mentioned, $G$ is much easier. Let's take a look. For $G:$
\begin{align*}
\frac{\partial L}{\partial x}-\frac{d}{dt}\,\frac{\partial L}{\partial \dot{x}}&=0 \\
\frac{\partial f}{\partial x}-\frac{d}{dt}\,\frac{\partial f}{\partial \dot{x}}&=0 \\
\frac{\partial f}{\partial x}-\left[\dot{x}\,\frac{\partial^2 f}{\partial x\,\partial\dot{x}}+\ddot{x}\,\frac{\partial^2 f}{\partial\dot{x}^2}\right]&=0,
\end{align*}
and that's pretty much it! For $F,$ things are much more complicated:
\begin{align*}
\frac{\partial L}{\partial x}-\frac{d}{dt}\,\frac{\partial L}{\partial \dot{x}}&=0 \\
\frac{\partial \sqrt{f}}{\partial x}-\frac{d}{dt}\,\frac{\partial \sqrt{f}}{\partial \dot{x}}&=0 \\
\frac12 \frac{1}{\sqrt{f}}\frac{\partial f}{\partial x}-\frac{d}{dt}\left[\frac12\,\frac{1}{\sqrt{f}}\frac{\partial f}{\partial \dot{x}}\right]&=0 \\
\frac{1}{\sqrt{f}}\frac{\partial f}{\partial x}-\left[\frac{\partial f}{\partial\dot{x}}\,\frac{d}{dt}\,\frac{1}{\sqrt{f}}+\frac{1}{\sqrt{f}}\,\frac{d}{dt}\,\frac{\partial f}{\partial\dot{x}}\right]&=0. \\
\end{align*}
Now, whenever we have a function $h=h(\dot{x}(t),x(t)),$ we must compute
$$\frac{d}{dt}\,h(\dot{x}(t),x(t))=\dot{x}\,\frac{\partial h}{\partial x}+\ddot{x}\,\frac{\partial h}{\partial\dot{x}}. $$
So, we have
\begin{align*}
\frac{d}{dt}\,(f)^{-1/2}&=\dot{x}\,(-1/2)f^{-3/2}\frac{\partial f}{\partial x}+\ddot{x}\,(-1/2)f^{-3/2}\frac{\partial f}{\partial\dot{x}}\\
&=-\frac{1}{2\,f^{3/2}}\left[\dot{x}\,\frac{\partial f}{\partial x}+\ddot{x}\,\frac{\partial f}{\partial\dot{x}}\right],\quad\text{and}\\
\frac{d}{dt}\,\frac{\partial f}{\partial \dot{x}}&=\dot{x}\,\frac{\partial^2 f}{\partial x\,\partial\dot{x}}+\ddot{x}\,\frac{\partial^2 f}{\partial\dot{x}^2}.
\end{align*}
Plugging this into the EL equation, we have
\begin{align*}
\frac{1}{\sqrt{f}}\frac{\partial f}{\partial x}-\left[\frac{\partial f}{\partial\dot{x}}\,\left(-\frac{1}{2\,f^{3/2}}\left[\dot{x}\,\frac{\partial f}{\partial x}+\ddot{x}\,\frac{\partial f}{\partial\dot{x}}\right]\right)+\frac{1}{\sqrt{f}}\,\left(\dot{x}\,\frac{\partial^2 f}{\partial x\,\partial\dot{x}}+\ddot{x}\,\frac{\partial^2 f}{\partial\dot{x}^2}\right)\right]&=0 \\
\frac{1}{\sqrt{f}}\frac{\partial f}{\partial x}+\frac{\partial f}{\partial\dot{x}}\,\frac{1}{2\,f^{3/2}}\left[\dot{x}\,\frac{\partial f}{\partial x}+\ddot{x}\,\frac{\partial f}{\partial\dot{x}}\right]-\frac{1}{\sqrt{f}}\,\left(\dot{x}\,\frac{\partial^2 f}{\partial x\,\partial\dot{x}}+\ddot{x}\,\frac{\partial^2 f}{\partial\dot{x}^2}\right)&=0 \\
\frac{\partial f}{\partial x}+\frac{1}{2f}\,\frac{\partial f}{\partial\dot{x}}\left[\dot{x}\,\frac{\partial f}{\partial x}+\ddot{x}\,\frac{\partial f}{\partial\dot{x}}\right]-\left(\dot{x}\,\frac{\partial^2 f}{\partial x\,\partial\dot{x}}+\ddot{x}\,\frac{\partial^2 f}{\partial\dot{x}^2}\right)&=0.
\end{align*}
So, if you compare this to the same expression for $G,$ you can see that you'd need the middle term to vanish:
\begin{align*}
\frac{1}{2f}\,\frac{\partial f}{\partial\dot{x}}\left[\dot{x}\,\frac{\partial f}{\partial x}+\ddot{x}\,\frac{\partial f}{\partial\dot{x}}\right]&=0 \\
\frac{\partial f}{\partial\dot{x}}\left[\dot{x}\,\frac{\partial f}{\partial x}+\ddot{x}\,\frac{\partial f}{\partial\dot{x}}\right]&=0.
\end{align*}
So you could either have
\begin{align*}
\frac{\partial f}{\partial\dot{x}}&=0,\quad\text{or} \\
\dot{x}\,\frac{\partial f}{\partial x}+\ddot{x}\,\frac{\partial f}{\partial\dot{x}}&=0.
\end{align*}
The second expression is equivalent to
$$\frac{df}{dt}=0. $$
So, if either
$$\frac{\partial f}{\partial\dot{x}}=0\quad\text{or}\quad \frac{df}{dt}=0, $$
then you will have the same minimizer. As these are fairly restrictive, you can see that, in general, you won't have that happen.