What is the “true” definition of a Lévy process?
I notice that definitions vary in non-equivalent ways:
1) Wikipedia states that a Lévy process is one that satisfies four particular properties, but these properties do not include the right-continuous property.
2) These notes require a Lévy process to be “right continuous with left-limits”.
3) These notes require a Lévy process to be “right continuous” (without the “with left limits”, why is that missing?)
I observe:
These definitions are not equivalent: In another SE question, I give a simple example of a process that satisfies the 4 properties of wikipedia but is surely not right-continuous: Are nonnegative Lévy processes almost always nondecreasing?
Both wikipedia and the first set of above notes mention that the 4 properties imply a “version” of $X(t)$ is right-continuous (without explanation of what that means). After some further web-searching I find that $Y(t)$ is a “version” of $X(t)$ if $P[Y(t)=X(t)]=1$ for all $t\geq 0$ (which is not the same as $P[Y(t) = X(t) \quad \forall t \geq 0]=1$). This fact does not seem strong enough to justify the wikipedia definition in comparison to the other definitions.
This stackexchange link incorrectly suggests the definitions are all equivalent (the answer is actually a “good” answer but makes an understandable mistake because one would assume the definitions should be equivalent): Definition of Lévy process
My gut reaction is to like the definition in the second set of notes the best (those notes are the most detailed) and to reject the wikipedia definition. It would be useful for someone to give thoughtful and experienced perspective on these distinctions, also to explain why the “left limits” is missing in the third set of notes (i.e., can that be proven back, or what?)