Suppose $A \in \mathbb{R}^{m \times n}$ with $a_{i,j}=i+j$ for all $(i,j) \in [m] \times [n]$.
$$A=\begin{pmatrix}a_{1,1} &\dots & a_{1,n}\\ \vdots & \ddots & \vdots\\ a_{m,1} & \dots & a_{m,n} \end{pmatrix}$$
Determine the rank of $A$ with $m,n>0$
$a_{i,j}=i+j$ means, that the matrix looks like this: $$A=\begin{pmatrix}2_{1,1} & 3_{1,2}&\dots & 1+n_{1,n}\\ 3_{2,1}&4_{2,2} &\dots & 2+n_{2,n}\\ \vdots & \vdots &\ddots &\vdots\\ m+1_{m,1} & m+2_{m,2} &\dots &m+n_{m,n} \end{pmatrix}$$
In order to determine the rank, we need to put $A$ in row echelon form:
$$A=\begin{pmatrix}2 & 3 & \dots & 1 + n \\ 0 & -\frac{1}{2} & \dots & \frac{1 - n}{2}\\ \vdots & \vdots & \ddots & \vdots \\ 0 & \frac{7 - m}{2} & \dots & \frac{-m + 1 - nm + n}{2} \end{pmatrix}$$
That's what I did so far. How to go on?
EDIT:
- Substracting the first row from all other rows
- Swap two rows
- $-2\cdot(row_1)+(row_2), \dots, (-(m-1))\cdot(row_1)+(row_2)$
$$\begin{pmatrix}2 & 3&\dots & 1+n\\ 3&4 &\dots & 2+n\\ \vdots & \vdots &\ddots &\vdots\\ m+1 & m+2 &\dots &m+n \end{pmatrix} \overbrace{\iff}^{1} \begin{pmatrix}2 & 3&\dots & 1+n\\ 1& 1 &\dots & 1\\ 2 & 2 & \dots & 2\\ \vdots & \vdots &\ddots &\vdots\\ m-1 & m-1 &\dots & m-1 \end{pmatrix}$$
$$\overbrace{\iff}^{2} \begin{pmatrix}1& 1 &\dots & 1\\ 2 & 3&\dots & 1+n\\ 2 & 2 & \dots & 2\\ \vdots & \vdots &\ddots &\vdots\\ m-1 & m-1 &\dots & m-1 \end{pmatrix} \overbrace{\iff}^{3} \begin{pmatrix}1& 1 &\dots & 1\\ 0 & 1&\dots & n-1\\ 0 & 0 & \dots & 0\\ \vdots & \vdots &\ddots &\vdots\\ 0 & 0 &\dots & 0 \end{pmatrix}$$ $\implies \operatorname{rank}_{\text{Row}}(A)=2\neq\operatorname{rank}_{\text{Column}}(A)=n+1$, but Row and Column rank should be equal, what have I done wrong?