1

Prove that $\displaystyle\lim_{n \to \infty}\left(a^{n} + b^{n} +c^{n}\right)^{1/n} = \max\left\{a,b,c\right\}$ for $\displaystyle a, b, c > 0$.

1 Answers1

5

Estimate: $$ \max\{a^n,b^n,c^n\}\leq a^n+b^n+c^n\leq 3\max\{a^n,b^n,c^n\} $$ and so taking $n$-th root, $$ \max\{a,b,c\}\leq (a^n+b^n+c^n)^{1/n}\leq 3^{1/n}\max\{a,b,c\} $$ and squeeze.

user10354138
  • 33,887