The argument depends on the definition of $\log(x)$. Personally, I prefer to define the logarithm by
$$ \log(x) = \int_{1}^{x} \frac{1}{t}\,\mathrm{d}t, $$
where $x > 0$.
Fix some $a > 0$. To show that $\log$ is continuous at $a$, let $\varepsilon > 0$, choose $\delta < \frac{a}{2} \min\{\varepsilon, 1\}$, and suppose that
$$0 < |x-a| < \delta.$$
Then
$$
|\log(a) - \log(x)|
= \left| \int_{1}^{a} \frac{1}{t}\,\mathrm{d}t - \int_{1}^{x} \frac{1}{t}\,\mathrm{d}t \right|
= \left| \int_{x}^{a} \frac{1}{t}\,\mathrm{d}t \right|
\le \left| \int_{x}^{a} \frac{1}{\min\{x,a\}} \,\mathrm{d}t \right|,
$$
where the inequality follows from the observation that $1/t$ is a decreasing function, hence the value of the integrand is maximized at one of the endpoints of integration. From the assumption that $|x-a| < a/2$, it follows that $x > a/2$. Thus
$$\min\{x,a\} \ge \min\{a/2,a\} = \frac{a}{2}
\implies \frac{1}{\min\{x,a\}} \le \frac{2}{a}.$$
Therefore
$$ |\log(a)-\log(x)|
\le \left| \int_{x}^{a} \frac{1}{\min\{x,a\}} \,\mathrm{d}t \right|
\le \left| \int_{x}^{a} \frac{2}{a} \,\mathrm{d}t\right|
= \frac{2}{a} |a-x|
< \frac{2}{a} \delta
< \frac{2}{a} \cdot \frac{a}{2} \varepsilon
= \varepsilon.
$$