Let $(E, \| \cdot \|_E)$ be a normed vector space over a field $\mathbb{K}$ and $(E', \| \cdot \|_{\mathrm{op}})$ its dual.
- Theorem 1). If $(E, \| \cdot \|_E)$ is reflexive, then each bounded sequence in $E$ (bounded in the topology induced by $\| \cdot \|_E$) has a weakly convergent subsequence.
- Theorem 2). Is $(E, \| \cdot \|_E)$ reflexive, then is $(E', \| \cdot \|_{op})$ reflexive as well.
Question: Find counterexamples on the conditions of the theorems where:
For 1): If $(E, \| \cdot \|_E)$ is not reflexive.
For 2): $(E', \| \cdot \|_{\mathrm{op}})$ is reflexive but $(E, \| \cdot \|_E)$ not.
Thanks.