6

Let $x_{i}\ge 0$ such that $$x_{1}+x_{2}+\cdots+x_{n}=1.$$ Find the maximum and minimum of $$f=10\sum_{i=1}^{n}x^3_{i}-9\sum_{i=1}^{n}x^5_{i}.$$

I have proved $n=2$ $$1\le f\le\dfrac{9}{4}$$ see: wolfarma

When $n=3$, How prove that $10(a^3+b^3+c^3)-9(a^5+b^5+c^5)\le\dfrac{9}{4}$

So I suspect that the general positive integer $n\ge 4$, also has the following conclusion $$1\le f\le \dfrac{9}{4}$$ when $$(x_{1},x_{2},\cdots,x_{n})=(1,0,0,\cdots,0),f=1$$ and $$(x_{1},x_{2},\cdots,x_{n})=(0,\dfrac{1}{2}+\dfrac{1}{2\sqrt{3}},\dfrac{1}{2}-\dfrac{1}{2\sqrt{3}},0,\cdots,0),f=\dfrac{9}{4}$$But how to prove or reverse this conclusion?

math110
  • 94,932
  • 17
  • 148
  • 519

3 Answers3

4

Assumption

If $f(x)$ is convex strictly increasing for $0 \le x \le 1$ then

$$ \min\sum_{k=1}^n f(x_k) \ \ \mbox{s. t. }\ \ \sum_{k=1}^n x_k = 1, \ \ x_k > 0 $$

has it's minimum at $ x_1 = \cdots = x_n = \frac 1n$

Using Lagrange Multipliers the problem can be stated as

$$ L(x,\lambda) = \sum_{k=1}^n f(x_k)-\lambda\left(\sum_{k=1}^n x_k -1\right) $$ so the stationary points are the solutions for

$$ \frac{d}{dx_k}f(x_k) -\lambda = 0\\ \sum_{k=1}^n x_k - 1 = 0 $$

or

$$ x_k = \frac{\sqrt{5\pm\sqrt{5} \sqrt{5-\lambda }}}{\sqrt{15}} $$

now assuming all $x_k = \frac{\sqrt{5+\sqrt{5} \sqrt{5-\lambda }}}{\sqrt{15}}$

so

$$ \lambda = \frac{15(2n^2-3)}{n^4} $$

then

$$ x_k =\left\{\frac 1n,\frac{\sqrt{\sqrt{\frac{\left(n^2-3\right)^2}{n^4}}+1}}{\sqrt{3}}\right\} $$

The last value is discarded because does not observe the restriction then we follow with $x_k = \frac 1n$ so

$$ \min \sum_{k=1}^n f(x_k) = n f\left(\frac 1n\right) $$

Attached a plot showing the $F_n(x_n^*) = \sum_{k=1}^n f(x_n^*)$ evolution assuming $n$ continuous

NOTE

$$ f(x) = 10x^3-9 x^5 $$

is convex strictly increasing for $0\le x \le 0.5 $ so for $n \gt 2$ we have at $x^* = \frac 1n$ a local minimum.

enter image description here

For $n = 2$ making $x_2=\lambda x_1, \ x_3 = \mu x_1$ we have

$$ \min_{\lambda,\mu}\frac{10(1+\lambda^3+\mu^3)}{(1+\lambda+\mu)^3}-\frac{9(1+\lambda^5+\mu^5)}{(1+\lambda+\mu)^5} $$

which gives the feasible solution

$$ x_1 = x_2 = \frac 12 $$

Cesareo
  • 36,341
  • How can you be a priori sure that maximum is attained? Provided that it is Lagrange multipliers give correct answer, but it can be the case that 'minimum' lies somewhere 'at infinity' (it being finite or not). – Radost Waszkiewicz Mar 01 '19 at 04:35
  • I'm sorry haven't read careful enough. Our domain is compact so my comment doesn't apply. A different issue arises - maybe minimum (maximum) is on the boundary? Lagrange multipliers wouldn't detect that. – Radost Waszkiewicz Mar 01 '19 at 04:43
  • @Radost The solution is at the boundary represented by the restriction $\sum_k x_k = 1$ – Cesareo Mar 01 '19 at 11:03
  • @Cesareo Say my please. What is a maximal value for $n=5$ and what is a minimal value for $n=5$? – Michael Rozenberg Mar 01 '19 at 15:34
  • @MichaelRozenberg My pleasure. The maximum is $\frac{5123 \sqrt{\frac{47}{3}}}{1875}$ and the minimum is $\frac{241}{625}$ – Cesareo Mar 01 '19 at 15:59
  • @Cesareo Say me please, when the maximum occurs for $n=5$. Also, how the minimal value follows from your solution? – Michael Rozenberg Mar 01 '19 at 16:02
  • @MichaelRozenberg My fault. Only the minima have coherence with the formulation because they are located at $x_n^* = \frac 1n$ – Cesareo Mar 01 '19 at 16:15
  • @Cesareo For the minimum you need to prove it. I don't see a proof. Can you explain, how from your solution follows that the minimum occurs for $x_i=\frac{1}{n}.$ I really don't see it. – Michael Rozenberg Mar 01 '19 at 16:37
  • @MichaelRozenberg As $f(x)$ is strictly increasing for $0 \le x \le \frac 12$ we can assure a local minimum for $n \ge 2$ at $x_n^* = \frac 1n$. – Cesareo Mar 01 '19 at 17:42
  • @Cesareo No. You are wrong. I think your solution it's nothing. Sorry. – Michael Rozenberg Mar 01 '19 at 17:46
  • Actually. If you'll see some down-voting it's not mine. – Michael Rozenberg Mar 01 '19 at 17:48
  • @MichaelRozenberg The problem $\min \sum_{k=1}^n x_k^3$ s. t. $\sum_{k=1}^n x_k= 1$ is for $0 \le x \le 1$ quite equivalent. In this case the extrema are located at $x_n^* = \frac 1n$ – Cesareo Mar 01 '19 at 17:54
3

For $n\geq4$ the minimal value is not $1$.

For example, take $n=4$ and $x_1=x_2=x_3=x_4=\frac{1}{4}.$

We'll prove that for $n\geq3$ the minimal value it's $\frac{10n^2-9}{n^4}$ and occurs for $x_1=x_2=...=x_n=\frac{1}{n}.$

Indeed, we need to prove that $$\sum_{k=1}^ng(x_k)\geq ng\left(\frac{\sum\limits_{k=1}^n}{n}\right),$$ where $g(x)=10x^3-9x^5,$ which has unique inflection point $x_0=\frac{1}{\sqrt3}$ on $[0,1]$.

Thus, by Vasc's HCF Theorem it's enough to prove our inequality for

$x_1=x_2=...=x_{n-1}=a$ and $x_n=1-(n-1)a,$ which gives $$(na-1)^2(9n^3(n^3-4n^2+6n-4)a^3-9n^2(3n^3-7n^2+3n+3)a^2+n(17n^3+2n^2-18n-18)a+n^3+n^2-9n-9)\geq0,$$ which is true because $$9n^3(n^3-4n^2+6n-4)a^3-9n^2(3n^3-7n^2+3n+3)a^2+$$ $$+n(17n^3+2n^2-18n-18)a+n^3+n^2-9n-9\geq0$$ for all $n\geq3$ and $0\leq a\leq\frac{1}{n-1}.$

The proof of the last statement for you.

The hint for the maximal value.

Since $g$ has an unique inflection point on $[0,1]$,

we can use Karamata and Jensen and we can get an inequality of one variable.

For $n=4$ it works very well, but for $n\geq5$ it's very ugly.

0

Since $$x_n=1-\sum_{i=1}^{n-1} x_i,\tag1$$ then required to find the least and the greatest values of $$F_n(\vec x) = \sum_{i=1}^{n-1} (10x_i^3-9x_i^5)+10x_n^3-9x_n^5\tag2,$$ where $$\vec x = \{x_1,x_2\dots x_{n-1}\},\quad x_k\ge0,\quad k=1,2\dots n.\tag3$$

The problem of bounds is not actual, because the arbitrary quantity of points can be set to zeros.

$\color{brown}{\textbf{The stationary points.}}$

The stationary points of $F$ can be defined from the system $$\frac{\partial F_n}{x_k}=0,\quad\text{where}\quad k=1,2\dots n-1,$$ or \begin{align} &30(x_k^2-x_n^2)-45(x_k^4-x_n^4) = 0,\quad k=1,2,\dots n-1,\\[4pt] &(x_k-x_n)(x_k+x_n)(2-3x_k^2-3x_n^2) = 0,\quad k=1,2,\dots n-1.\\[4pt] \end{align} If $x_n$ is known, then, taking in account the constraints $(3),$ vector $\vec x$ WLOG can be presented in the form of $$ \vec x = \left\{\underbrace{\sqrt{\frac23-x_n^2}\dots\sqrt{\frac23-x_n^2}}_{n-m},\underbrace{x_n\dots x_n}_{m-1}\right\},\\[8pt] m=1\dots n.\tag4 $$ I.e. exactly $m$ unknowns set to $x_n,$ and the other $(n-m)$ set to $\sqrt{\frac23-x_n^2}\,.$

$\color{brown}{\textbf{Case }\quad\mathbf{m=n.}}$

Solution for the inner stationary points is $$\begin{align} &\vec x = \left\{\underbrace{\frac1n\dots\frac1n}_{n-1}\right\},\quad x_{n}=\frac1n,\\ &F_n\left(\vec x\right) = \frac{10}{n^2}-\frac9{n^4},\\[4pt] &\dfrac{\partial}{\partial n}F_n\left(\vec x\right) = \frac{4(9-5n^2)}{n^5},\\[4pt] &\min_n F_n\left(\vec x\right) = \lim_{n\to\infty} F_n\left(\vec x\right) = 0,\\[4pt] &\max_n F_n\left(\vec x\right) = \frac{31}{16}\quad\text{at}\quad n=2,\quad x_n=\frac12 \end{align}$$ (see also Wolfram Alpha plot).

The case m=n

Taking in account the bounds of area, vector $\vec x$ can consist an arbitrary number of zeros instead of $x_n$.

So for the given $n$

$$F_n\left(\vec x\right)\in\left[\frac{10-9n^2}{n^4},\frac{31}{16}\right].\tag5$$

Note that if $n>3$ then $\min F\left(\vec x\right) < 1$ in the inner stationary points.

In paricular, if $n=4$ then $\min F\left(\vec x\right)= \dfrac{151}{256}.$

$\color{brown}{\textbf{Case }\quad\mathbf{m<n.}}$

Let $$s=n-m,\quad s\ge 1,\tag6$$ then \begin{align} &sx_1+mx_{s+m} = 1, \quad\text{where}\quad x_1=\sqrt{\frac23-x_{s+m}^2},\\[4pt] &P(x_{s+m},m) = 0, \quad\text{where}\quad P(x) = 3(mx-1)^2 + s^2(3x^2-2), \quad mx_{s+m}\le 1,\\[4pt] &3(m^2+s^2)x_{s+m}^2 - 6mx_{s+m} + 3 - 2s^2 =0,\\[4pt] &x_{s+m} = \dfrac{3m \pm s\sqrt{6(m^2+s^2)-9\phantom{\big|}}}{3(m^2+s^2)} = \dfrac{9m^2-6s^2(m^2+s^2)+9s^2}{3(m^2+s^2)(3m \mp s \sqrt{6(m^2+s^2)-9\phantom{\big|}}},\\[4pt] &x_1 = \dfrac{3m^2+3s^2-3m^2 \mp ms\sqrt{6(m^2+s^2)-9\phantom{\big|}}}{3s(m^2+s^2)} =\dfrac{3s \mp m\sqrt{6(m^2+s^2)-9\phantom{\big|}}}{3(m^2+s^2)}, \end{align} and, using the symmetry of $(x_{s+m},x_1)$ by $(s,m),$ $$\begin{align} x_{s+m} = \dfrac{3m \pm s\sqrt{6(m^2+s^2)-9\phantom{\big|}}}{3(m^2+s^2)} = \dfrac{3-2s^2}{3m \mp s\sqrt{6(m^2+s^2)-9\phantom{\big|}}},\\ \quad x_1=\dfrac{3s \mp m\sqrt{6(m^2+s^2)-9\phantom{\big|}}}{3(m^2+s^2)} = \dfrac{3-2m^2}{3s \pm m\sqrt{6(m^2+s^2)-9\phantom{\big|}}}. \end{align}\tag7$$

Note.

  • $P(0) = 3-2s^2,\quad P\left(\frac1m\right)=s^2,$ so $P(0)\not=0,\quad P\left(\frac1m\right)\not= 1.$

Easy to see that the numerator of $x_{s+m}$ in $(7)$ is negative iff $s=1,$ i.e. $m=n-1.$

Let us consider the case $s=1$ apparently.

$\textbf{Case }\mathbf{n=2,\quad m=1,\quad \dbinom sm = \dbinom11.}$

From $(7)$ should $$x_2 = \dfrac{3 - \sqrt3}6 = \dfrac1{3 + \sqrt3},\quad x_1 = \frac{3 +\sqrt3}6 =\dfrac1{3-\sqrt3},$$ $$F_2\left(\overrightarrow{\{x_1\}}\right) = 20\dfrac{3^3+3\cdot3^2}{6^3} - 18\dfrac{3^5+10\cdot3^4+5\cdot3^3}{6^5} = \dfrac94.$$

$\textbf{Case }\mathbf{n \ge 3,\quad m=n-1,\quad \dbinom sm \in \dbinom1{[2, \infty)}.}$

From $(7)$ should $$\begin{align} &x_{n} = \dfrac{3m - \sqrt{6m^2-3\phantom{\big|}}}{3(m^2+1)} = \dfrac1{3m + \sqrt{6m^2-3\phantom{\big|}}},\\ &x_1=\dfrac{3 + m\sqrt{6m^2-3\phantom{\big|}}}{3(m^2+1)} = \dfrac{3-2m^2}{3 - m\sqrt{6m^2-3\phantom{\big|}}},\\ &\vec x = \left\{x_1,\underbrace{x_n\dots x_n}_{m-1}\right\},\\ &F_n\left(\vec x\right) =\dfrac{30m^6-19m^4+24m^2+1}{(m^2+1)^4} +\dfrac{8m^7-76m^5+100m^3-32m}{9(m^2+1)^4}\sqrt{6m^2-3\phantom{\big|}},\\ \end{align}$$ (see also Wolfram Alpha plot),

Case s=1

wherein the derivative $$\dfrac\partial{\partial n} F\left(\vec x\right) = \dfrac{4(110m^8-499m^6+516m^4-163m^2+8 + \sqrt{6m^2-3\phantom{\big|}}(-45m^7+192m^5-165m^3+30m)}{3(m^2+1)^5\sqrt{6m^2-3\phantom{\big|}}}$$ less than zero $\forall (m\ge2)$ (see also Wolfram Alpha factor plot)

Case s=1 derivative

$\textbf{Case }\mathbf{n \ge 4,\quad m=n-s,\quad \dbinom sm \in \dbinom{[2, \infty)}{[n-s, \infty)}.}$

Taking in account $(7)$ and $(4),$ can be written \begin{align} &\vec x = \left\{\underbrace{x_1\dots x_1}_{n-m},\underbrace{x_n\dots x_1}_{m-1}\right\},\\ &x_n = \dfrac{3m + s\sqrt{6(m^2+s^2)-9\phantom{\big|}}}{3(m^2+s^2)} = \dfrac{2s^2-3}{s\sqrt{6(m^2+s^2)-9\phantom{\big|}}-3m},\\[4pt] & x_1=\dfrac{3s - m\sqrt{6(m^2+s^2)-9\phantom{\big|}}}{3(m^2+s^2)} = \dfrac{3-2m^2}{3s + m\sqrt{6(m^2+s^2)-9\phantom{\big|}}},\\[4pt] &\left[\begin{aligned} &\begin{cases} m=0\\ x_1=\dfrac1s \end{cases}\\[4pt] &\begin{cases} m=1\\ x_n = \dfrac{3 + s\sqrt{6s^2-3\phantom{\big|}}}{3(s^2+1)} = \dfrac{2s^2-3}{s\sqrt{6s^2-3\phantom{\big|}}-3}\\ x_1=\dfrac{3s - \sqrt{6s^2-3\phantom{\big|}}}{3(s^2+1)} = \dfrac1{3s + \sqrt{6s^2-3\phantom{\big|}}} \end{cases}\\[4pt] \end{aligned}\right. \end{align} Easy to see that this case leads to the previous solutions.

$\color{brown}{\textbf{Conclusion.}}$

Therefore, $$F_n\left(\vec x\right)\in\left\{\dfrac{10}{n^2}-\dfrac9{n^4},\dfrac94\right\}$$ (see also Wolfram Alpha plot).

enter image description here