1

Lat $a<b$ I have to Show that there exist smooth functions $\psi:\mathbb{R}\rightarrow\mathbb{R}$ such that

$\psi(x) = \begin{cases} >0 &\mbox{if } a<x<b \\ =0 & \mbox{if } x\leq a \text{ or } x\geq b. \end{cases}$

I also have the result

that the function

$f(x) =\begin{cases} e^{-\frac{1}{x}}& \mbox{ } x>0 \\ 0, &\mbox{ } x\leq 0 \end{cases}$

is smooth and that the every derivative in $0$ vanishes.

For the left side I can just change the function $f(x)$

$f_a(x)=\begin{cases} e^{-\frac{1}{x-a}}& \mbox{ } x>a \\ 0, &\mbox{ } x\leq a \end{cases}$

Because I already know that $\lim_{x\downarrow 0}f(x)=0$ then also $ \lim_{x\downarrow a}f_a(x)=0$.

For the right side I want that the function has the same behaviour but I don't know how I can construct such a function.

Hints are appreciated

New2Math
  • 1,303
  • Links to the previous results:https://math.stackexchange.com/questions/3109300/proof-that-lim-x-downarrow-0xme-frac-1x-0-m-in-mathbbz-with-lho/3109435 https://math.stackexchange.com/questions/3110098/show-that-the-function-fx-e-frac1x-text-if-x0-wedge-fx-0-text/3111904#3111904 – New2Math Feb 14 '19 at 10:11

0 Answers0