Let's define $x$ as a vector in $\mathbb R^n$
Let's define $V$ as the set of all vectors orthogonal to $x$, i.e $V$={$y$ in $\mathbb R^n$|$x·y=0$}
Let's define $z$ as another vector in $\mathbb R^n$
Calculate the distance between $z$ and the nearest point to $z$ in $V$, i.e min||z-y|| for a vector $y$ in $V$.
After thinking about this, would the answer be $0$? For example, let's say x is the z-axis (0,0,1). So the vectors in V would be the ones around it of any length in the x-y axis. If z is any other vector in $\mathbb R^n$, wouldn't the euclidean distance between z and a vector in V be $0$? Because you could find any vector in V that would intersect z or be infinitesimally close.
If my thinking process is wrong, any help would be great! I'm looking for a way to formalize my thoughts better :)