Through the related question, I think I understand the derivation.
We are given that
$$x(a)=\sum_{n=0}^\infty\frac{x^{(n)}}{n!}a^n$$
We also know that
$$\text{exp}(a)=\sum_{n=0}^\infty\frac{a^n}{n!}$$
Therefore,
$$\text{exp}\Big(a\frac{\partial}{\partial{t}}\Big)=\sum_{n=0}^\infty\frac{a^n}{n!}\Big(\frac{\partial}{\partial{t}}\Big)^n$$
Hence if we evaluate this at $x(t)$ we have
$$\text{exp}\Big(a\frac{\partial}{\partial{t}}\Big)x(t)=\sum_{n=0}^\infty\frac{a^n}{n!}\Big(\frac{\partial{x(t)}}{\partial{t}}\Big)^n =\sum_{n=0}^\infty\frac{a^n}{n!}x^{n}(t)=\sum_{n=0}^\infty\frac{x^{n}(t)}{n!}a^n$$
It is necessary for $t=0$ in order to compute the Maclaurin expansion. If $t\neq0$, then we would have
$$x(a)=\sum_{n=0}^\infty\frac{x^{n}(t)}{n!}(a-t)^n$$
Therefore,
$$\text{exp}\Big(a\frac{\partial}{\partial{t}}\Big)x(t)\Big|_{t=0}=\sum_{n=0}^\infty\frac{x^{n}(t)}{n!}a^n=x(a)$$