It is stated in Joyce's 'Compact Manifolds with Special Holonomy' (P.124) that if $M$ is a compact Riemannian symmetric space, then $M$ is Ricci flat implies $M$ is flat. I am having trouble seeing why this is true.
In fact, could I not choose a Ricci flat Lie group, such as $G_2$ (which has holonomy $G_2$, see Holonomy of Lie groups, hence flat) to get a counterexample?
It would be great if anyone can explain Joyce's statement and see what is wrong with my proposed counterexample. Thanks!