Consider the following tridiagonal Toeplitz matrix. Let $n$ be even. $${A_{n \times n}} = \left[ {\begin{array}{*{20}{c}} {0}&{1}&{}&{}&{}\\ {1}&{0}&{1}&{}&{}\\ {}&{1}&{\ddots}&{\ddots}&{}\\ {}&{}&{\ddots}&{\ddots}&{1}\\ {}&{}&{}&{1}&{0} \end{array}} \right]$$ What is the inverse $A^{-1}$?
Clearly, $A^{-1}$ is symmetric.
I look for a proof of the following conjecture that $A^{-1}$ is given as follows:
If $A_{i, j}^{-1}$ such that $j$ is odd and $i =1+j + 2 m$ with $m\in \cal N_0$, then $A_{i, j}^{-1} = (-1)^m$. From which follows by symmetry:
If $A_{i, j}^{-1}$ such that $j$ is even and $i =-1+j - 2 m$ with $m\in \cal N_0$, then $A_{i, j}^{-1} = (-1)^m$.
All other $A_{i, j}^{-1} = 0$.
Here is an example, computed with Matlab, for $n=10$ which shows the structure:
$${A_{10 \times 10}^{-1}} = \left[ {\begin{array}{*{20}{r}} 0 & 1 & 0 & -1 & 0 & 1 & 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 & 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & 1 \\ 1 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & -1 & 0 & 1 & 0 & -1 & 0 & 1 & 0 \end{array}} \right]$$