$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
With $\ds{\verts{z} < 1}$:
\begin{align}
\sum_{n = 1}^{\infty}h_{n}z^{n} & =
\sum_{n = 1}^{\infty}h_{n - 1}\,z^{n} +
\sum_{n = 1}^{\infty}{n + 1 \choose 3}z^{n} +
\sum_{n = 1}^{\infty}nz^{n}
\\[5mm] \implies
-h_{0}\ +\
\underbrace{\sum_{n = 0}^{\infty}h_{n}z^{n}}_{\ds{\equiv\ \mc{H}\pars{z}}} & =
\sum_{n = 0}^{\infty}h_{n}\,z^{n + 1} +
\sum_{n = 0}^{\infty}{n + 2 \choose 3}z^{n + 1} +
z\,\totald{}{z}\underbrace{\sum_{n = 1}^{\infty}z^{n}}
_{\ds{z \over 1 - z}}
\\[5mm] \implies
-h_{0} + \mc{H}\pars{z} & = z\,\mc{H}\pars{z} +
z\sum_{n = 0}^{\infty}{n + 2 \choose 3}z^{n} +
{z \over \pars{1 - z}^{2}}
\\[5mm] \implies
\mc{H}\pars{z} & = {h_{0} \over 1 - z} +
{z \over 1 - z}\sum_{n = 0}^{\infty}{n + 2 \choose 3}z^{n} +
{z \over \pars{1 - z}^{3}}
\end{align}
Note that
\begin{align}
&\bbox[10px,#ffd]{\sum_{n = 0}^{\infty}{n + 2 \choose 3}z^{n}} =
\sum_{n = 0}^{\infty}{n + 2 \choose n - 1}z^{n} =
\sum_{n = 0}^{\infty}{-4 \choose n - 1}\pars{-1}^{n - 1}z^{n}
\\[5mm]= &\
\sum_{n = 0}^{\infty}{-4 \choose n}\pars{-1}^{n}z^{n + 1}
=
z\sum_{n = 0}^{\infty}{-4 \choose n}\pars{-z}^{n} =
z\pars{1 - z}^{-4}
\end{align}
Then,
$$
\bbx{\mc{H}\pars{z} = {h_{0} \over 1 - z} +
{z^{2} \over \pars{1 - z}^{5}} +
{z \over \pars{1 - z}^{3}}}
$$