$\left.\begin{align} x(x^{\large 2}\!\!-\!1)\,\mid\, x(x^{\large 2n}\!-1)\!\\[.3em]
\Rightarrow\ \bmod\ x^{\large 3}\!-\!x\!:\,\ x^{\large 1+2n}\equiv x\end{align}\,\right\}\ \ $ so
$\ \ \ \begin{align}{\quad\, x^{\large 135} + x^{\large 125} - x^{\large 115} + x^{\large 5} + 1\\
\equiv\, x\ \ \, +\,\ \ x\ \ \,-\,\ \ x\,\ \ +\,\ \ x\ +\ 1\,\equiv\, \bbox[5px,border:1px solid #c00]{2x+1}}\end{align}$
Remark $\ $ More generally, we can factor $x$ out of mods via the mod Distributive Law
$\begin{align}f\!-\!f_0\bmod xg = x((f-f_0)/x\bmod g)\, = &\,\ x(x^{\large 134}+x^{\large 124}-x^{\large 114}+x^{\large 4})\bmod x^{\large 2}-1\\
= &\,\ x(1\,\ \ +\,\ \ 1\ \ \,-\,\ \ 1\,\ \ +\,\ \ 1\,\ \ )\bmod \color{#c00}{x^2-1}\,=\, 2x \end{align}$