I know there is a closed form for $$\sum_{n=1}^{\infty}\frac{\sin n}{n!},$$ and I am wondering if there is also a closed form for $$\sum_{n=1}^{\infty}\frac{\csc n}{n!}.$$ My Attempt: $$\sum_{n=1}^{\infty}\frac{\csc n}{n!}$$ $$= \sum_{n=1}^{\infty}{\frac{2i}{(e^{in}-e^{-in})n!}}$$ $$ = 2i\sum_{n=1}^{\infty}{\frac{1}{\left(\frac{e^{2in}}{e^{in}}-\frac{1}{e^{in}}\right)n!}}$$ $$= 2i\sum_{n=1}^{\infty}{\frac{e^{in}}{(e^{2in}-1)n!}}$$ I know the taylor series $$ e^x = \sum_{n=1}^{\infty}{\frac{x^{n}}{n!}},$$ but I don't know how to continue the problem anymore.
To see whether the series converges, please visit Convergency of $\sum_{n=1}^{\infty}\frac{\csc(n)}{n!}$