Here is an alternative approach which doesn't require any knowledge of the Beta distribution.
Since
$$Y=\max\{X_1,\ldots,X_n\} \leq y \iff \forall j=1,\ldots,n: X_j \leq y$$
it follows from the independence of the random variables $(X_j)_{j \leq n}$ that
$$\mathbb{P}(Y \leq y) = \mathbb{P} \left( \bigcap_{j=1}^n \{X_j \leq y\} \right) = \prod_{j=1}^n \mathbb{P}(X_j \leq y) = y^n \tag{1}$$
for $y \in (0,1)$. Thus the distribution function $F$ of $Y$ satisfies
$$F(y) = \begin{cases} 0, & y \leq 0, \\ y^n, & y \in (0,1), \\ 1, & y \geq 1. \end{cases}$$
Approach 1: Differentiating $F$ we find that $Y$ has a density $p$ with respect to Lebesgue measure, $$p(y) = n y^{n-1} 1_{(0,1)}(y).$$ Thus $$\mathbb{E}(Y)= \int y p(y) \, dy =n \int_0^1 y^n \, dy = \frac{n}{n+1}$$ and $$\mathbb{E}(Y^2) = \int y^2 p(y) \, dy = n \int_0^1 y^{n+1} \, dy = \frac{n}{n+2}.$$ Thus,
$$\begin{align*} \text{var}(Y) = \mathbb{E}(Y^2)-(\mathbb{E}(Y))^2 = \frac{n}{n+2} - \frac{n^2}{(n+1)^2} &= \frac{n(n+1)^2 - n^2 (n+2)}{(n+1)^2 (n+2)} \\ &= \frac{n}{(n+1)^2 (n+2)}. \end{align*}$$
Approach 2: For any non-negative random variable $Z$ it holds that
$$\mathbb{E}(Z) = \int_0^{\infty} \mathbb{P}(Z > z) \, dz = \int_0^{\infty} (1-\mathbb{P}(Z \leq z)) \, dz, \tag{2}$$
see e.g. this question for details. For $Z:=Y$ we obtain from $(1)$ that
$$\mathbb{E}(Y) = \int_0^{1} (1-y^n) \, dy= 1 - \frac{1}{n+1} = \frac{n}{n+1}.$$
Similarly,
$$\mathbb{E}(Y^2) \stackrel{(2)}{=} \int_0^{\infty} (1-\mathbb{P}(Y^2 \leq y)) \, dy = \int_0^{\infty} (1-\mathbb{P}(Y \leq \sqrt{y})) \, dy,$$
and so by $(1)$
$$\mathbb{E}(Y^2) = \int_0^1 (1- y^{n/2}) \, dy = 1- \frac{1}{\frac{n}{2}+1} = \frac{n}{n+2}.$$
As in the first approach, we thus find
$$\begin{align*} \text{var}(Y) = \mathbb{E}(Y^2)-(\mathbb{E}(Y))^2 = \frac{n}{n+2} - \frac{n^2}{(n+1)^2} = \frac{n}{(n+1)^2 (n+2)}. \end{align*}$$