Part1: Centering Y does not affect $\beta_{-1}$. Proof:
First note this property:
$$(X^TX)^{-1}X^T (\mathbf1,X_1,...,X_p)=(X^TX)^{-1}X^TX=\mathbb{I}\quad
\Rightarrow (X^TX)^{-1}X^T\mathbf1=\begin{pmatrix}1\\0\\ \vdots\\0\end{pmatrix}=e_1$$
In particular $X(X^TX)^{-1}X^T\mathbf{1}=\mathbf1$ $(*)$ which means:
\begin{align}
\hat{\beta}^*=(X^TX)^{-1}X^T(Y-\mathbf1\bar Y)=(X^TX)^{-1}X^TY -(X^TX)^{-1}X^T\mathbf1\bar Y=\hat{\beta}-e_1\bar Y
\end{align}
Part 2: Centering X does not affect $\beta_{-1}$
Be $\hat{\beta}=\arg\min_{\beta}\|Y-X\beta\|_2$ if X has full rank this solution exists and is unique given by $(X^TX)^{-1}X^TY$.
Now consider that:
\begin{align}
\|Y-(\mathbf1,X_1,...,X_p)\beta\|_2&=\|Y- (\beta_0\mathbf1 +\beta_1X_1+...+\beta_pX_p)\|_2 \\
&=\|Y-[(\beta_0+\bar X_1\beta_1+...+\bar X_p\beta_p)\mathbf1 \\
&\quad+ \beta_1(X_1-\bar X_1\mathbf1)+...+\beta_p(X_p-\bar X_p\mathbf1)]\|_2
\end{align}
This means for $\tilde{\beta}:=
\begin{pmatrix}
\hat\beta_0+\bar X_1\hat\beta_1+...+\bar X_p\hat\beta_p \\
\hat\beta_1 \\ \vdots \\ \hat\beta_p
\end{pmatrix}$
and $X^*:=(\mathbf1,X_1-\bar X_1,...,X_p-\bar X_p)$
that
$$\|Y-X\hat\beta\|_2=\|Y-X^*\tilde\beta\|_2$$
and this means that $\tilde\beta=\arg\min_{\beta}\|Y-X^*\beta\|_2$ because there can not be a $\beta$ with
\begin{align}
\|Y-X^*\beta\|_2<\|Y-X^*\tilde\beta\|_2=\|Y-X\hat\beta\|_2
\end{align}
Since this $\beta$ could be translated back into a $\beta^*$ such that $\|Y-X\beta^*\|_2<\|Y-X\hat\beta\|_2$ but $\hat\beta$ is a minimum.
Because $\mathbf1$ and $\bar X_i\mathbf1$ are linear dependent. And since the determinant is multilinear X* has thus full rank:
\begin{align}
\det(X^*)&=\det(\mathbf1,X_1-\bar X_1,...,X_p-\bar X_p) \\
&=\det(\mathbf1,X_1,X_2-\bar X_2,...,X_p-\bar X_p)-\det(\mathbf1,\bar X_1\mathbf1,X_2-\bar X_2,...,X_p-\bar X_p)\\
&=\det(\mathbf1,X_1,X_2-\bar X_2,...,X_p-\bar X_p)\\
&= ... = \det(X) \neq 0
\end{align}
Thus $\tilde\beta=({X^*}^TX^*)^{-1}{X^*}^TY$ is the unique minimum.
And $\tilde\beta_{-1}=\hat\beta_{-1}$
Interpretation/Additional notes:
Because of $(*)$ if X and Y are centered $\hat\beta_0=0$. Proof:
\begin{align}
0&=\mathbf1^TY=\mathbf1^T X(X^TX)^{-1}X^T Y =\mathbf1^T\hat Y=\mathbf1^T X\hat\beta \\
&=\mathbf1^T (\mathbf1,X_1,...,X_p)\hat\beta=(n,n\bar X_1, ...,n\bar X_p)\hat\beta \\
&=(n,0,...,0)\hat\beta=n\hat\beta_0
\end{align}
Which means that if they are centered $\beta_0$ can be dropped.
In that case $\hat\beta$ can be written as:
\begin{align}
\hat\beta=(X^TX)^{-1}X^TY=(\widehat{Cov}(X_i,X_j)_{i,j=1,...,p})^{-1}
\begin{pmatrix}
\widehat{Cov}(X_1,Y)\\
\vdots \\
\widehat{Cov}(X_p,Y)
\end{pmatrix}
\end{align}
Otherwise this still represents $\hat\beta_{-1}$