Find the eigenvalues and eigenvectors of the matrix $A = uu^t$, where $u\in\mathbb{R}^n$
The multiplication will give me a $n \times n$ matrix like this:
$$\begin{bmatrix} u_1^2 & u_1 u_2 & \dots & u_1u_n \\ u_2 u_1 & u_2^2 & \dots & u_2u_n \\ \vdots & \vdots & \ddots & \vdots \\ u_n u_1 & \dots & \dots& u_n^2 \end{bmatrix}$$
I suppose there is some trick using the fact that this matrix is symmetric and square. This should help taking the determinant
$$\det \begin{bmatrix} u_1^2 - \lambda & u_1 u_2 & \dots & u_1u_n \\ u_2 u_1 & u_2^2 - \lambda & \dots & u_2u_n \\ \vdots & \vdots & \ddots & \vdots \\ u_n u_1 & \dots & \dots& u_n^2 - \lambda \end{bmatrix}$$