Some possibilities,
possibly useful.
Let
$f(n,k)
= \sum \limits_{i=0}^{n} i^k
$.
Then
$\begin{array}\\
f(n+1,k)
&= \sum \limits_{i=0}^{n+1} i^k\\
&=0^k+ \sum \limits_{i=1}^{n+1} i^k\\
&=0^k+ \sum \limits_{i=0}^{n} (i+1)^k
\qquad (0^k=1 \text{ if }k=0, 0 \text{ otherwise})\\
&=0^k+ \sum \limits_{i=0}^{n}\sum_{j=0}^k \binom{k}{j} i^j\\
&=0^k+ \sum_{j=0}^k \binom{k}{j}\sum \limits_{i=0}^{n} i^j\\
&=0^k+ \sum_{j=0}^k \binom{k}{j}f(n, j)\\
\end{array}
$
Another.
$\begin{array}\\
2f(n, k)
&=\sum \limits_{i=0}^{n} i^k+\sum \limits_{i=0}^{n} i^k\\
&=\sum \limits_{i=0}^{n} i^k+\sum \limits_{i=0}^{n} (n-i)^k\\
&=\sum \limits_{i=0}^{n} (i^k+(n-i)^k)\\
\text{so}\\
2f(n, 2k+1)
&=\sum \limits_{i=0}^{n} (i^{2k+1}+(n-i)^{2k+1})\\
&=\sum \limits_{i=0}^{n} (i^{2k+1}+\sum_{j=0}^{2k+1}\binom{2k+1}{j}n^j(-1)^{2k+1-j}i^{2k+1-j})\\
&=\sum \limits_{i=0}^{n} (i^{2k+1}+(-1)^{2k+1}i^{2k+1}+\sum_{j=1}^{2k+1}\binom{2k+1}{j}n^j(-1)^{2k+1-j}i^{2k+1-j})\\
&=\sum \limits_{i=0}^{n} \sum_{j=1}^{2k+1}\binom{2k+1}{j}n^j(-1)^{2k+1-j}i^{2k+1-j}\\
&=\sum \limits_{i=0}^{n} \sum_{j=0}^{2k}\binom{2k+1}{2k+1-j}n^{2k+1-j}(-1)^{j}i^{j}\\
&= \sum_{j=0}^{2k}\binom{2k+1}{2k+1-j}n^{2k+1-j}(-1)^{j}\sum \limits_{i=0}^{n}i^{j}\\
&= \sum_{j=0}^{2k}\binom{2k+1}{2k+1-j}n^{2k+1-j}(-1)^{j}f(n, j)\\
\end{array}
$
What happens if
you use $2k$ instead
of $2k+1$?