I don't understand this proof for the case where $m^{1/n} \in \mathbb{Q \cap Z}^C$.
Then $\exists \; a, b \in \mathbb{Z} \qquad \ni \qquad\gcd(a,b)=1 \; \text{ and } \; m^{1/n} = \dfrac{a}{b}$.
If $\gcd(a,b)=1$, then $\gcd(a^n,b^n)=1$.
Thus, $m = \dfrac{a^n}{b^n} \in \mathbb{N}$.
But how do I deduce the contradiction: $\dfrac{a^n}{b^n} \not\in \mathbb{N}$?