For $A \in \mathbb{C}^{m \times n}$, prove the induced matrix norm $$\|A\|_\infty = \max_i \|a^*_i\|_1$$ where $a^*_i$ denotes the $i$th row of $A$.
Attempt:
proof
Using the $a_j$ to denote the columns of $A$ we have
$$\|A\|_\infty := \sup_{\|x\|_\infty =1}\|Ax\|_\infty = \sup \left|\left| \sum_{j=1}^n x_ja_j\right|\right|_\infty \leq \sup \sum_{j=1}^n \left|\left|x_ja_j \right|\right|_\infty \leq \sup \sum_{j=1}^n |x_j| \|a_j\|_\infty \cdots$$
Here's were I'm having some difficulty
$$ \cdots\leq \sup \left\{ \max_j ||a_j||_\infty \sum_{j=1}^n |x_j|\right\} = \sup \left\{ \left(\max_j \|a_j\|_\infty\right) \|x_j\|_1 \right\} \leq \sup \left\{ \left(\max_j \left[\max_{1\leq i \leq m}a_{ij} \right] \right) \|x_j\|_1 \right\} \cdots$$
I think I'm doing something fatally wrong here but I can't figure it out. Style wise this also seems like way too much.