$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\sum_{k = 1}^{n}{\pars{-1}^{k - 1} \over k}{n \choose k} & =
\sum_{k = 1}^{n}\pars{-1}^{k - 1}{n \choose k}\int_{0}^{1}t^{k - 1}\,\dd t =
-\int_{0}^{1}\sum_{k = 1}^{n}{n \choose k}\pars{-t}^{k}\,{\dd t \over t}
\\[5mm] & =
-\int_{0}^{1}{\pars{1 - t}^{n} - 1 \over t}\,\dd t =
\int_{0}^{1}{t^{n} - 1 \over t - 1}\,\dd t =
\int_{0}^{1}\sum_{k = 0}^{n - 1}t^{k}\,\dd t =
\sum_{k = 0}^{n - 1}\int_{0}^{1}t^{k}\,\dd t
\\[5mm] & =
\sum_{k = 0}^{n - 1}{1 \over k + 1}\,\dd t =
\sum_{k = 1}^{n}{1 \over k}\,\dd t =
\bbx{1 + {1 \over 2} + \cdots + {1 \over n}}
\end{align}