Let ${\cal V}$ be n Hilbert space over $\mathbb{R}$ or $\mathbb{C}$, with an orthonormal basis $(e_n)_{n=1}^{\infty}$. For every bounded linear operator $A: {\cal V} \to {\cal V}$, we can associate $A$ with an matrix $(a_{ij})_{i,j=1}^{\infty}$ where $a_{ij} = \langle Ae_j,e_i\rangle$.
Is there a matrix $(b_{ij})_{i,j=1}^{\infty}$ such that:
1. $\sum_{i=1}^{\infty}|b_{ij}|^2 < \infty$
2. $\sum_{j=1}^{\infty}|b_{ij}|^2 < \infty$
3. $\sup_{i,j \ge 1} |b_{ij}| < \infty$
and there is no bounded linear operator $B : {\cal V} \to {\cal V}$ such that $b_{ij} = \langle Be_j,e_i\rangle$
I am really struggling with this problem, I will appreciate any help!