For k $\ge2$ we recursively define $A_{2^k}$ as $\begin{bmatrix} A_{2^{k-1}} & A_{2^{k-1}} \\ A_{2^{k-1}} & -A_{2^{k-1}} \end{bmatrix}$ and $A_1=[1]$
The problem is to show that $|\det(A_n)|=n^{n/2}$
My attempt: we do an induction on $k$
$|\det(A_2)|=2=2^{2/2}$. Induction hypothesis: $|\det(A_{n})|=n^{n/2}$ and we want to show that $|\det(A_{2n})|=(2n)^n$
using block matrix properties
$|\det(A_{2n})|=|\det(\begin{bmatrix} A_{n} & A_{n} \\ A_{n} & -A_{n} \end{bmatrix})|=|\det(-A)\det(A+AA^{-1}A)|=|2^n\det(A_n)^2|=|2^nn^n|=(2n)^n$
Can somone confirm that there are no flaws in the reasoning please?