Let $A=[a_{ij}]\in Mat_n(\mathbb{R})$ the matrix defined by:
$$a_{ij}=\begin{eqnarray}n+1 &&&&&&&&\text{if $i=j$}\\ 1 &&&&&&&&\text{if $i\not=j$} \end{eqnarray}$$
Calulate $\det(A)$
My work:
By definition $$A=\begin{pmatrix} n+1&&1&&1&&1&&...&&1\\ 1&&n+1&&1&&1&&...&&1\\ 1&&1&&n+1&&1&&...&&1\\ .\\ .\\ .\\ 1&&1&&1&&1&&...&&n+1 \end{pmatrix}$$
Apply elemental operation by rows, we have: $$\begin{pmatrix} n+1&&1&&1&&1&&...&&1\\ 1&&n+1&&1&&1&&...&&1\\ 1&&1&&n+1&&1&&...&&1\\ .\\ .\\ .\\ 1&&1&&1&&1&&...&&n+1 \end{pmatrix}\equiv \begin{pmatrix} 1&&1&&1&&1&&...&&n+1\\ 1&&n+1&&1&&1&&...&&1\\ 1&&1&&n+1&&1&&...&&1\\ .\\ .\\ .\\ n+1&&1&&1&&1&&...&&1 \end{pmatrix}\\\\ \equiv \begin{pmatrix} 1&&1&&1&&1&&...&&n+1\\ 0&&n&&0&&0&&...&&-n\\ 0&&0&&n&&0&&...&&-n\\ .\\ .\\ .\\ n&&0&&0&&0&&...&&-n \end{pmatrix} $$ $$ \equiv \begin{pmatrix} 1&&1&&1&&1&&...&&n+1\\ 0&&n&&0&&0&&...&&-n\\ 0&&0&&n&&0&&...&&-n\\ .\\ .\\ .\\ 0&&-n&&-n&&-n&&...&&-n^2-2n \end{pmatrix} \equiv \begin{pmatrix} 1&&1&&1&&1&&...&&n+1\\ 0&&n&&0&&0&&...&&-n\\ 0&&0&&n&&0&&...&&-n\\ .\\ .\\ .\\ 0&&0&&-n&&-n&&...&&-n^2-3n \end{pmatrix} \equiv \begin{pmatrix} 1&&1&&1&&1&&...&&n+1\\ 0&&n&&0&&0&&...&&-n\\ 0&&0&&n&&0&&...&&-n\\ .\\ .\\ .\\ 0&&0&&0&&-n&&...&&-n^2-4n \end{pmatrix} \equiv \begin{pmatrix} 1&&1&&1&&1&&...&&n+1\\ 0&&n&&0&&0&&...&&-n\\ 0&&0&&n&&0&&...&&-n\\ .\\ .\\ .\\ 0&&0&&0&&0&&...&&n^2-n^n \end{pmatrix}=B $$
Then, $\det(A)=-\det(B)=-\det\begin{pmatrix} 1&&1&&1&&1&&...&&n+1\\ 0&&n&&0&&0&&...&&-n\\ 0&&0&&n&&0&&...&&-n\\ .\\ .\\ .\\ 0&&0&&0&&0&&...&&n^2-n^n \end{pmatrix}=-n^{n-1}+n^n$
I have a little doubt in the $n\times n$ element, I think is a little different. Can someone help me?