It is the quantity $\displaystyle \left( \frac 1{|\Omega|} \int_\Omega |u|^p \, dx \right)^{1/p}$ that is nondecreasing.
You should probably use Jensen's inequality, but if you want to use Hölder's inequality you could assume $p < q$ and let $r = \frac qp$ with Hölder conjugate $r' = \frac q{q-p}$ so that
$$ \int_\Omega |u|^p \, dx \le \left( \int_\Omega \, dx \right)^{1/r'} \left( \int_\Omega |u|^{pr} \, dx \right)^{1/r} = |\Omega|^{1 - q/p} \left( \int_\Omega |u|^q \right)^{p/q}$$ which simplifies to
$$ \frac 1{|\Omega|} \int_\Omega |u|^p \, dx \le \left( \frac 1{|\Omega|} \int_\Omega |u|^q \right)^{p/q}.$$ Now take the $1/p$ power on both terms.
If $u$ is essentially bounded it is evident that $\displaystyle \left( \frac 1{|\Omega|} \int_\Omega |u|^p \, dx \right)^{1/p} \le \|u\|_\infty$. Now let $0 < \epsilon < \|u\|_\infty$ and define $A_\epsilon = \{x \in \Omega \mid |u(x)| > \|u\|_\infty - \epsilon\}$. Then $|A_\epsilon| > 0$ and
$$ (\|u\|_\infty - \epsilon)^p |A_\epsilon| \le \int_{A_\epsilon} |u|^p \, dx \le \int_\Omega |u|^p \, dx$$ so that
$$ \|u\|_\infty - \epsilon \le \left( \frac{|\Omega|}{|A_\epsilon|} \right)^{1/p} \left( \frac 1{|\Omega|} \int_\Omega |u|^p \, dx \right)^{1/p}.$$As $p \to \infty$ you have $$\left( \frac{|\Omega|}{|A_\epsilon|} \right)^{1/p} \to 1$$ so that $$\|u\|_\infty \le \lim_{p \to \infty} \left( \frac 1{|\Omega|} \int_\Omega |u|^p \, dx \right)^{1/p} + \epsilon.$$
Now let $\epsilon \to 0^+$.