Let $W$ be the vector space over $\mathbb R$ defined by
$$ W= \begin{Bmatrix} \left( \begin{matrix} x-y&2x+y+3z\\ -14x-7y-21z&-3x+3y \end{matrix} \right) | x,y,z\in \mathbb R \end{Bmatrix} $$
Find a basis for this subspace of $\mathbb R^{2x2}$ from matrices whose rank is only 1
My way:
$$x \left( \begin{matrix} 1&2\\ -14&-3 \end{matrix} \right) +y \left( \begin{matrix} -1&1\\ -7&3 \end{matrix} \right) +z \left( \begin{matrix} 0&3\\ -21&0 \end{matrix} \right) $$
Now: $$ \left( \begin{matrix} 1&2&-14&-3\\ -1&1&-7&3\\ 0&3&-21&0\\ \end{matrix} \right) \to \left( \begin{matrix} 1&2&-14&-3\\ 0&3&-21&0\\ 0&0&0&0\\ \end{matrix} \right) $$
So the basis I have found is:
$$\begin{Bmatrix} \left( \begin{matrix} 1&2\\ -14&-3 \end{matrix} \right) , \left( \begin{matrix} 0&3\\ -21&0 \end{matrix} \right)\end{Bmatrix} $$
But their rank is 2 and not 1 and I don't know how to continue from here.