I have the matrix $$A =\begin{pmatrix} 0 & 1 \\ - 1 & 0 \end{pmatrix}$$
and I have to find $e^A$. I've found two complex-conjugate eigenvalues $\lambda_{1,2} = \pm i$, so substracting $\lambda_1 = i$ from the matrix's diagonal I got:
$$A_1 = \begin{pmatrix} -i & 1 \\-1 & i \end{pmatrix}$$
and therefore. to find eigenvector I have to solve the system:
$$A_1 = \begin{pmatrix} -i & 1 \\-1 & i \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
so the first eigenvector is $h_1 = \begin{pmatrix}1 \\ i\end{pmatrix}$ and the second one is $h_2 = \begin{pmatrix}1 \\ -i\end{pmatrix}$ so the general solution is $$x(t) = C_1e^{it}\begin{pmatrix} 1 \\i\end{pmatrix} + C_2e^{-it}\begin{pmatrix} 1 \\-i\end{pmatrix}$$
I know that now I have to solve two Cauchy's problems for the standard basis $\mathbb{R}^2$ with vectors $v_1 = (1, 0)$ and $v_2 = (0,1)$ But I do not know how to approach it for complex numbers.