Show, that $\ell^\infty(\mathbb{N})$ is not separable. Use, that $\mathcal{P}(\mathbb{N})$ is uncountable and observe the set $\{1_A\colon A\in\mathcal{P}(\mathbb{N})\}\subseteq\ell^\infty(\mathbb{N})$.
Suppose $\ell^\infty(\mathbb{N})$ is separable. Then it exists a countable, dense set $D=\{d_n\colon n\in\mathbb{N}\}\subseteq\ell^\infty(\mathbb{N})$.
Since $D$ is dense in $\ell^\infty(\mathbb{N})$ exists for every $a_k\in\ell^\infty(\mathbb{N})$ and $\varepsilon>0$ a sequence $(d_k^{(n)})\subseteq D$ with $\|d_k^{(n)}-a_k\|_{\infty}=\|d_k(n)-a_k(n)\|_{\infty}<\varepsilon$
Now I want to construct an $(a_k)$ such that it can not be the limit of any $d_k\in D$.
I am trying to follow the hint in the task:
$a_k=\begin{cases} 0,~~ \text{if}~~ |d_k(k)|>1\\ 1,~~ \text{else}\end{cases}$
Now we have:
$\vert|d_k(n)-a_k(n)\|_\infty=\sup_{n\in\mathbb{N}} |d_k(n)-a_k(n)|\geq 1$ for all $n\in\mathbb{N}$
This is a contradiction. Hence $\ell^\infty(\mathbb{N})$ is separable.
Is this correct? Thanks in advance for your help.