If $a \in \mathbb{R}$, evaluate $$ \lim_{n \to \infty}\left(\begin{matrix} 1&\frac{a}{n}\\\frac{-a}{n}&1\end{matrix}\right)^{n}$$
My attempt: Let $$A = \left(\begin{matrix} 0&a\\-a&0\end{matrix}\right) = -a\left(\begin{matrix} \cos(\frac{\pi}{2})&-\sin(\frac{\pi}{2})\\\sin(\frac{\pi}{2})&\cos(\frac{\pi}{2})\end{matrix}\right)$$ so that $$A^k = (-a)^k \left(\begin{matrix} \cos(\frac{k\pi}{2})&-\sin(\frac{k\pi}{2})\\\sin(\frac{k\pi}{2})&\cos(\frac{k\pi}{2})\end{matrix}\right)$$
Thus, \begin{align}\displaystyle \lim_{n \to \infty}\left(\begin{matrix} 1&\dfrac{a}{n}\\\dfrac{-a}{n}&1\end{matrix}\right)^{n} &=\displaystyle \lim_{n \to \infty} \left(I+\dfrac{A}{n}\right)^n =e^A=\displaystyle \sum_{k=0}^{\infty}\dfrac{A^k}{k!}\\&= \sum_{k=0}^{\infty} \left(\begin{matrix} \dfrac{(-a)^k\cos(\frac{k\pi}{2})}{k!}&-\dfrac{(-a)^k\sin(\frac{k\pi}{2})}{k!}\\\dfrac{(-a)^k\sin(\frac{k\pi}{2})}{k!}&\dfrac{(-a)^k\cos(\frac{k\pi}{2})}{k!}\end{matrix}\right) \end{align}
and since $\displaystyle \sum_{k=0}^{\infty}\dfrac{(-a)^k\cos(\frac{k\pi}{2})}{k!}=1+0-\dfrac{a^2}{2!}+0+\dfrac{a^4}{4!}+\cdots= \cos a$ and
$\displaystyle \sum_{k=0}^{\infty}\dfrac{(-a)^k\sin(\frac{k\pi}{2})}{k!}=0-a+0+\dfrac{a^3}{3!}+0-\dfrac{a^5}{5!}+\cdots= -\sin a$ therefore the required answer is
$\left(\begin{matrix} \cos a&\sin a\\-\sin a&\cos a\end{matrix}\right).$
However the above answer does not match the choices provided which are $I, 0$ and none of the above. So my question is: Is my answer correct?