You seem to be trying to explain things to a non-mathematician, so I'm going to simplify my answer a bit and stop to explain things like the derivative. It's important to understand what these objects actually mean before we try to reason about them.
This is a somewhat deeper question than it may seem. It is entirely fair to ask why polynomials do not resemble (for example) the Weierstrass function when you zoom in on them.
The key property of the Weierstrass function is that it is continuous everywhere but nowhere differentiable. That is, it is defined everywhere and does not contain any sudden jumps, but you cannot draw a line tangent to any point on the graph, because it is too jagged for "tangent" to be a meaningful concept. The slope of such a tangent line would be called the derivative, but the Weierstrass function does not have a derivative.
Polynomials, on the other hand, are a special case of a family of functions known as the analytic functions. Analytic functions are functions which can be written in power series form, i.e. for some value $x_0$ and some sequence $a_n$, we have:
$$
f(x) = \sum_{n=0}^\infty a_n(x - x_0)^n
$$
(The sum must converge, and the sum must specifically converge to $f(x)$. Otherwise we cannot say that one is equal to the other. Also, just for the purposes of this sum, we take the convention that $0^0 = 1$, so that the zeroth term of this series does not become undefined at $x = x_0$.)
A polynomial is an analytic function in which $a_n = 0$ for all $n$ greater than some number $d$, which we call the degree of the polynomial. You can also have analytic functions for which this is not true. Examples include the sine, cosine, and exponential functions, which all admit infinite series expansions.
As it turns out, each term of this sum is relatively easy to differentiate (find the derivative of), by first expanding and then applying the power rule. What makes the analytic functions special is that differentiating an analytic function gives us back another analytic function. As a result, every analytic function is infinitely differentiable; that is, we can keep taking derivatives as many times as we please.
But then, any wobbliness that the function might exhibit must eventually die down as we zoom in far enough. Otherwise, it would not be possible to draw a tangent line to it, and it would therefore lack a derivative. This also allows us to rule out (infinitely) many different kinds of larger-scale irregularities, such as sudden changes in concavity. Ruling out these irregularities is ultimately what allows the Taylor series formula to recover the power series of an analytic function using only information about a single point of the function's graph. The graph is so regular that a single point is all you need to extrapolate the whole.